Introducing Asymmetry in a CMOS Latch to Obtain Inherent Power-On-Reset Behavior

Fabian L. Cabrera, F. Rangel de Sousa and Hector Pettenghi

fabian.c@ufsc.br

Universidade Federal de Santa Catarina Florianópolis - Brasil

2019

 Minimalist systems are good candidates to obtain ultra-low-power circuits.

- Minimalist systems are good candidates to obtain ultra-low-power circuits.
- Initial state of sequential circuits is very important.

- Minimalist systems are good candidates to obtain ultra-low-power circuits.
- Initial state of sequential circuits is very important.
- Reset inputs in each cell: extra silicon area and capacitances, increasing dynamic power consumption.

- Minimalist systems are good candidates to obtain ultra-low-power circuits.
- Initial state of sequential circuits is very important.
- Reset inputs in each cell: extra silicon area and capacitances, increasing dynamic power consumption.
- Power-on-reset (POR) circuits: relative large capacitors, resistors and diodes and also are designed to work under specific conditions, for example, fixed start-up time.

- Minimalist systems are good candidates to obtain ultra-low-power circuits.
- Initial state of sequential circuits is very important.
- Reset inputs in each cell: extra silicon area and capacitances, increasing dynamic power consumption.
- Power-on-reset (POR) circuits: relative large capacitors, resistors and diodes and also are designed to work under specific conditions, for example, fixed start-up time.
- We propose the use of asymmetry in a latch, turning its initial value into an well-determined state without the need of a reset.

 Mostly used in SRAM, but can be used in sequential circuits for ultra-low-power applications.

Inverter transference Se curves: 3 intercepts var

Solutions when Vdd varies from 0 to 1.2 V

Process variations

 Montecarlo simulation: From 300 samples, Q_S started with '0' in 144 samples and with '1' in 156 samples.

• Can be observed in a transient noise simulation.

Input devices

- Unknown initial input voltages (R,S).
- Different sizes or number of transistors in each side.
- Very difficult to predict at the design stage.

Proposed Asymmetry

• Low-vt current $\approx 10X$ greater than regular transistors at $V_{GS} = 0$.

1.2

Power-On Reseted Flip-Flop

► *Q_{AM}* was expected to start with '0'. Verified

Prototype

► *Q_{AM}* was expected to start with '0'. Verified

 Q_{SM} was unpredicted at design stage. After measurements it was concluded that **input devices** always induced an initial value of '1'.

A	
AR I	
all f	
ALLE	
<i>MHH</i> E	

	Power-on state	Decisive factors	Example
Symmetric	Variable or	Process variations	Montecarlo sim.
	difficult to	Noise	Tran. noise sim.
	predict	Input devices	Q_{SM} (meas.)
Asymmetric	Imposed by design	Design	Q_{AM} (meas.)

Conclusions

The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.

- The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.

- The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.
- The proposed modification kept the same occupied area and had little effect on propagation times.

- The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.
- The proposed modification kept the same occupied area and had little effect on propagation times.
- A new block called **Power-on Reseted Flip-Flop** (**POR-FF**) was designed and tested in CMOS 130nm, verifying its correct functioning.

- The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.
- The proposed modification kept the same occupied area and had little effect on propagation times.
- A new block called **Power-on Reseted Flip-Flop** (**POR-FF**) was designed and tested in CMOS 130nm, verifying its correct functioning.
- ► This technique has the advantage of avoiding power-on reset module and reset inputs in each sequential cell. (lower occupied area and lower dynamic power consumption)

