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Introduction

I Minimalist systems are good candidates to obtain
ultra-low-power circuits.

I Initial state of sequential circuits is very important.

I Reset inputs in each cell: extra silicon area and capacitances,
increasing dynamic power consumption.

I Power-on-reset (POR) circuits: relative large capacitors,
resistors and diodes and also are designed to work under specific
conditions, for example, fixed start-up time.

I We propose the use of asymmetry in a latch, turning its initial
value into an well-determined state without the need of a reset.
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Conventional (symmetric) CMOS latch

Vdd
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I Mostly used in SRAM, but can be used in sequential circuits for
ultra-low-power applications.
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Possible states as function of the supply
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Decisive factors for power-on state 1

Process variations
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I Montecarlo simulation:
From 300 samples, QS started with
’0’ in 144 samples and with
’1’ in 156 samples.
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Decisive factors for power-on state 2

Noise
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I Can be observed in a transient noise simulation.
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Decisive factors for power-on state 3

Input devices

Vdd

QSQS
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I Unknown initial input voltages (R,S).
I Different sizes or number of transistors in each side.
I Very difficult to predict at the design stage.
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Proposed Asymmetry
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I Low-vt current ≈10X greater than regular transistors at VGS = 0.
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Possible states as the proposed topology
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Target application used as example
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Prototype
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I QAM was expected to start
with ‘0’. Verified

I QSM was unpredicted at design
stage. After measurements it
was concluded that input
devices always induced an
initial value of ‘1’.
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Summary of the power-on characteristics of
latches

Power-on state Decisive factors Example

Variable or Process variations Montecarlo sim.

Symmetric difficult to Noise Tran. noise sim.

predict Input devices QSM (meas.)

Asymmetric Imposed by design Design QAM (meas.)
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Conclusions

I The conventional CMOS latch was analyzed to determine the
factors that define its initial state: process variations, noise and
input devices.

I We can impose by design the initial value of a latch using
asymmetry. This can be done with different threshold-voltage
transistors.

I The proposed modification kept the same occupied area and had
little effect on propagation times.

I A new block called Power-on Reseted Flip-Flop (POR-FF)
was designed and tested in CMOS 130nm, verifying its correct
functioning.

I This technique has the advantage of avoiding power-on reset
module and reset inputs in each sequential cell. (lower occupied
area and lower dynamic power consumption)

Slide 13



Conclusions

I The conventional CMOS latch was analyzed to determine the
factors that define its initial state: process variations, noise and
input devices.

I We can impose by design the initial value of a latch using
asymmetry. This can be done with different threshold-voltage
transistors.

I The proposed modification kept the same occupied area and had
little effect on propagation times.

I A new block called Power-on Reseted Flip-Flop (POR-FF)
was designed and tested in CMOS 130nm, verifying its correct
functioning.

I This technique has the advantage of avoiding power-on reset
module and reset inputs in each sequential cell. (lower occupied
area and lower dynamic power consumption)

Slide 13



Conclusions

I The conventional CMOS latch was analyzed to determine the
factors that define its initial state: process variations, noise and
input devices.

I We can impose by design the initial value of a latch using
asymmetry. This can be done with different threshold-voltage
transistors.

I The proposed modification kept the same occupied area and had
little effect on propagation times.

I A new block called Power-on Reseted Flip-Flop (POR-FF)
was designed and tested in CMOS 130nm, verifying its correct
functioning.

I This technique has the advantage of avoiding power-on reset
module and reset inputs in each sequential cell. (lower occupied
area and lower dynamic power consumption)

Slide 13



Conclusions

I The conventional CMOS latch was analyzed to determine the
factors that define its initial state: process variations, noise and
input devices.

I We can impose by design the initial value of a latch using
asymmetry. This can be done with different threshold-voltage
transistors.

I The proposed modification kept the same occupied area and had
little effect on propagation times.

I A new block called Power-on Reseted Flip-Flop (POR-FF)
was designed and tested in CMOS 130nm, verifying its correct
functioning.

I This technique has the advantage of avoiding power-on reset
module and reset inputs in each sequential cell. (lower occupied
area and lower dynamic power consumption)

Slide 13



Conclusions

I The conventional CMOS latch was analyzed to determine the
factors that define its initial state: process variations, noise and
input devices.

I We can impose by design the initial value of a latch using
asymmetry. This can be done with different threshold-voltage
transistors.

I The proposed modification kept the same occupied area and had
little effect on propagation times.

I A new block called Power-on Reseted Flip-Flop (POR-FF)
was designed and tested in CMOS 130nm, verifying its correct
functioning.

I This technique has the advantage of avoiding power-on reset
module and reset inputs in each sequential cell. (lower occupied
area and lower dynamic power consumption)

Slide 13



Questions?
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