Introducing Asymmetry in a CMOS Latch to Obtain Inherent Power-On-Reset Behavior

Fabian L. Cabrera, F. Rangel de Sousa and Hector Pettenghi fabian.c@ufsc.br

Universidade Federal de Santa Catarina Florianópolis - Brasil

2019

 \triangleright Minimalist systems are good candidates to obtain ultra-low-power circuits.

- \triangleright Minimalist systems are good candidates to obtain ultra-low-power circuits.
- \triangleright Initial state of sequential circuits is very important.

- \triangleright Minimalist systems are good candidates to obtain ultra-low-power circuits.
- Initial state of sequential circuits is very important.
- \triangleright Reset inputs in each cell: extra silicon area and capacitances, increasing dynamic power consumption.

- \triangleright Minimalist systems are good candidates to obtain ultra-low-power circuits.
- Initial state of sequential circuits is very important.
- \triangleright Reset inputs in each cell: extra silicon area and capacitances, increasing dynamic power consumption.
- \triangleright Power-on-reset (POR) circuits: relative large capacitors, resistors and diodes and also are designed to work under specific conditions, for example, fixed start-up time.

- \triangleright Minimalist systems are good candidates to obtain ultra-low-power circuits.
- Initial state of sequential circuits is very important.
- \triangleright Reset inputs in each cell: extra silicon area and capacitances, increasing dynamic power consumption.
- \triangleright Power-on-reset (POR) circuits: relative large capacitors, resistors and diodes and also are designed to work under specific conditions, for example, fixed start-up time.
- \triangleright We propose the use of asymmetry in a latch, turning its initial value into an well-determined state without the need of a reset.

 \triangleright Mostly used in SRAM, but can be used in sequential circuits for ultra-low-power applications.

Inverter transference

Process variations

 \blacktriangleright Montecarlo simulation: From 300 samples, *Q^S* started with '0' in 144 samples and with '1' in 156 samples.

 \triangleright Can be observed in a transient noise simulation.

Input devices

- \triangleright Unknown initial input voltages (R, S) .
- \triangleright Different sizes or number of transistors in each side.
- \triangleright Very difficult to predict at the design stage.

Proposed Asymmetry

► Low-vt current \approx 10X greater than regular transistors at V_{GS} = 0.

curves: 3 intercepts

Solutions when Vdd varies from 0 to 1.2 V

Zoom for Vdd values up to 100mV

Power-On Reseted Flip-Flop

 \triangleright *Q*_{*AM*} was expected to start with '0'. Verified

Slide 11

^I *QAM* was expected to start with '0'. Verified

^I *QSM* was unpredicted at design stage. After measurements it was concluded that **input** devices always induced an initial value of '1'.

 \triangleright The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.

- \triangleright The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- \triangleright We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.

- \triangleright The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- \triangleright We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.
- \triangleright The proposed modification kept the same occupied area and had little effect on propagation times.

- \triangleright The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- \triangleright We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.
- \triangleright The proposed modification kept the same occupied area and had little effect on propagation times.
- ▶ A new block called Power-on Reseted Flip-Flop (POR-FF) was designed and tested in CMOS 130nm, verifying its correct functioning.

- \triangleright The conventional CMOS latch was analyzed to determine the factors that define its initial state: process variations, noise and input devices.
- \triangleright We can impose by design the initial value of a latch using asymmetry. This can be done with different threshold-voltage transistors.
- \triangleright The proposed modification kept the same occupied area and had little effect on propagation times.
- ▶ A new block called Power-on Reseted Flip-Flop (POR-FF) was designed and tested in CMOS 130nm, verifying its correct functioning.
- \triangleright This technique has the advantage of avoiding power-on reset module and reset inputs in each sequential cell. (lower occupied area and lower dynamic power consumption)

